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Abstract—In the engineering world, more and more accent
is put on the real-time embedded applications. They are used
almost everywhere, in domains as: automotive, robotics, health,
avionics, spacecraft, industrial control, etc.. Often, on the
proper functionality of real-time systems, depends the well
functioning of a whole system and their mistakes might have
fatal consequences. Often such real-time applications have
additional requirements for a fast and reliable communication
with the rest of the system they are part from. In order to
prohibit misbehavior of such a critical application, proper
tests should be developed and applied to it. Although real-
time application development gained so much ground and
a lot of tools and paradigms for real-time emerged, there
are still little effort invested in the development of tools for
software real-time testing. In this paper we propose a testing
framework solution for real-time, based on a standardized
testing language, that was used with success by now in
many domains, as telecommunications, automotive, health, etc..
This language is named TTCN-3 – the acronym comes from
Testing and Test Control Notation – and it was developed by
European Telecommunications Standards Institute (ETSI). The
purpose of this paper is to demonstrate that the proposed test
framework achieves both a time deterministic behavior and
high performance at the communication points with the System
Under Test(SUT).

Keywords-testing, real-time, embedded, TTCN-3, communi-
cations intensive

I. INTRODUCTION

Real-time embedded systems play an important role in

nowadays world. Many industrial processes relay on the

good functioning of embedded systems. The area of appli-

cability for real-time systems is very wide, ranging from

industrial process controllers, to technical equipment used

in the health sector, automotive, avionics and space control.

As each sector develops technologically, more and more

equipments and functionalities are added, and the complex-

ity of interactions between different components increases.

There are networks of interconnected embedded systems,

communicating with each other through timed protocols,

continuously exchanging data and synchronizing with each

other. Such networks can represent the future car to car

communicating networks or networks on wheels, monitoring

and controlling systems, health assistance systems or disaster

recovery systems. As we can imagine, the overall well

functioning of the system depends on the well functioning of

every each composing element. A comprehensive and sys-

tematic quality assurance of such complex system represents

a real challenge. This challenge has to be assumed, since

most of the real-time systems perform safety or other critical

procedures, which might become fatal if not performed cor-

rectly. The quality assurance of software-intensive systems

is still lacking full automatic techniques and is performed by

a multiplicity of proprietary test systems and test platforms.

Since the general tendency is to integrate systems that

communicate with each other and have also strict timing

constraints, a good approach for testing would be to provide

a standard framework for asserting good functionality of

all those systems. In real-time communications intensive

applications, the simultaneous achievement of the required

performance and determinism is a difficult problem. Also

the communication aspect indicates that the focus should be

on the I/O communication ports and timely features of these.

Our approach is to take an already standardized language,

that is practiced in the industry for some years, and to design

a test framework that is also suitable for real-time. The aim

is to provide a manufacturer-independent test environment

consisting of modular service components (e.g. test manage-

ment component, sender component, receiver component,

platform adapters, etc.). TTCN-3 [4], [6], [5] provides this

type of modularity, it is a well structured language developed

specially for testing, it is standardized and was used with

success in domains as telecommunication and automotive.

TTCN-3 has powerful concepts and efficient mechanisms for

dealing with ports and for emphasizing the communication

aspects between the Test System(TS) and the System Under

Test (SUT). The drawbacks of TTCN-3, as it is right now, are

that it was designed for testing only functionality-related re-

quirements of the systems, and not real-time aspects. As it is

well known, for a real-time system the total correctness of an

operation depends not only upon its logical correctness, but

also upon the time in which it is performed.TTCN-3 lacks

2010 Sixth International Conference on Networking and Services

978-0-7695-3969-0/10 $26.00 © 2010 IEEE

DOI 10.1109/ICNS.2010.58

368



of proper mechanism for dealing with real-time applications,

both at conceptual and implementation level. It has no proper

mechanism for dealing with time and for imposing time

limits. A comprehensive discussion on the missing issues of

TTCN-3 regarding real-time handling is done in [14], [3].

On the conceptual level, research was performed to eliminate

those shortcomings and several extensions to the language

were already proposed [8], [9], [7], [11], [10], [2], [3]. In this

paper we discuss how an appropriate implementation for the

proposed extensions would look like and present an abstract

implementation design. The implementation design makes

the connection between the abstract real-time TTCN-3 spec-

ification and possible different real-time operating system

platforms. It introduces an intermediary step of abstraction,

making a bridge between the abstract and test-oriented con-

cepts and their translation into concepts from the operating

systems world. The latter are immediately implementable on

any real-time operating system platform, using the specific

API for that platform and the design guide that is provided

in this paper. In second section we refer the source for the

extensions that were chosen for the framework. In the third

section we present the implementation design and in the

fourth section we present a real hardware-software platform

that was chosen as basis for the implementation. We also

present some parameters indicating the performance of the

platform and from which general performance estimations

can be deduced. Nevertheless, the entire platform evaluation

can be made only when the whole testing system will be

implemented and used for testing real real-time applications.

The entire work - both the concepts and the design - is

concentrating on the parts from the TS that are evolving

around communication ports with the SUT, around sending

and receiving of messages. It is important to perform those

operations efficient and to have accurate time estimations of

them. The approach we present is inspired by the theory

of the real-time operating systems [15], [16], [17], [18].

The Real-time Test System (RTTS) is seen as a complex

environment, composed from different elements with real-

time deadlines, elements which have to be managed and

scheduled. In this context, we can say that the test cases

written using the abstract TTCN-3 specification are to be

translated into a real-time application, running on a real-

time operating system (RTOS).

II. GENERAL DISCUSSION ABOUT TTCN-3 AND ITS

EXTENSIONS

As a basis for the conceptual level, we are going to follow

the approach taken by the TEMEA project [8], approach

that is also presented in [3]. They provide conceptual means

for dealing with time, and for relating time to incoming

and outgoing events at the communication ports between the

TS and the SUT. The majority of concepts are taken over

mostly as they are defined in TEMEA project, but there

are some additional observations and restrictions to those

concepts that are discussed in the following.

As a correction to the [3], it should be mentioned that

for the sending of messages only the temporal predicate at
makes sense. It imposes a precise time at which TS should

take some action. The other time predicates are not good

in this context, because they imply a random decision to be

taken by the TS (e.g. send a stimuli at a random point in time

within the specified interval). This would only increase the

complexity of the TS, possibly leading to non-deterministic

situations (makes the tests non-repeatable).

Nevertheless, they are safe to be used with the receive

operation, because only an evaluation operation based on the

timestamp of the event would be performed here. Logical op-

erators as and and or can be used here in conjunction with

temporal predicates in order to form complex expressions.

As in the case of send operation, in conjunction with

break only the usage of the temporal predicate at makes

sense (correction to the [3]).

alt{...}break at datetime;

III. IMPLEMENTATION DESIGN FOR THE REAL-TIME

EXTENSIONS

A. Dealing with Time

At the TTCN-3 specification level, time points are re-

garded as positive real numbers. Nevertheless, on a real

machine they will be translated in terms of number of

ticks of the inner clock of the system. The values and

expressions attached to the temporal predicates from the

real-time TTCN-3 specification are calculated using the

internal representation of time.

From a time perspective, the send, receive and

break operations in combination with the time predicates

and time measurement mechanism can be divided in two

categories:

• Control instructions:

p.send(msg) at tx;
alt{...}break at ty{...}

The control instructions are using internal mechanisms,

as the clock of the system and the time interrupts, for

imposing constraints to parts of the execution of the TS.

The control instructions are the instructions that have to be

performed at precise points in time. When those points in

time are encountered, the clock system generates a timer

interrupt. The timer interrupt is treated by an interrupt

handler, which interrupts any running activity and performs

the code associated with that instruction.

Such instructions are send and break instructions with

at time predicate. At the initialization of the test system, all

the time values given as parameters to the at predicate are

saved into a list maintained by the kernel (see Figure 1). This

list is ordered in the increasing order of time values. Another

step performed in the initialization phase is that of creating
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time handlers for each value in the list. The handlers have a

behavior associated with the type of instruction to which the

temporal predicate is applied: send or break. When the

clock value equals one value from the list, a time interrupt

is generated and the associated event handler is invoked.

Because the interrupts are not generated periodically, the

clock should run in one shot mode.

• Verification and log instructions:

p.send(msg)→timestamp;
p.receive(msg)→timestamp;
p.receive(msg) at tx/

before tx/

after tx/

within(tx,ty);
The log instructions save the time when the message is

received into the timestamp variable. The value is transomed

from the internal representation into a datetime value, and

handed to the upper abstraction layer of the TTCN-3. The

verification instructions evaluate if a message was received

in the expected time frame and the evaluation is based on

the timestamp associated with the message.

These mechanisms are presented in the following sections,

when each instruction is analyzed in detail.

Figure 1. Generating timer event and triggering the event handling routine
for a ”send” or a ”break” statement

B. Dealing with Events

We are dealing with two types of events: internal gener-

ated events, for time determinism, also called time events,

and external generated events, which are triggered by the

I/O ports whenever a new message has arrived.
1) Time Events: For the time events, that are generated

as described in Subsection III-A, we have two types of event

handlers. The handler associated with a send operation

performs sending of a message when it is invoked. The other

one executes the code associated with the break instruction

in TTCN-3. In TTCN-3 the break operation is always used

in relation to the alt statement. The break instruction is

used to impose an upper time limit to the execution of alt
statement (see Figure 2). Therefore, the invoked handler is

also used to kill the task associated with the alt statement.

The handler associated with the send operation is triggered

in a similar way with the one for break.

Figure 2. Time event handling routine associated with ”break”

2) External Events: When a message is received from

the SUT, an I/O interrupt is generated on the respective

port. At the TS initialization we create for each incoming

port a virtual queue. The interrupt activates the handler.

The handler takes the message, takes the clock time, and

saves the message together with the timestamp into the

queue associated to the port. The procedure is presented in

Figure 3.

Figure 3. Event handling routine triggered by an external event

C. Verification and Log Instructions

Verification and log instruction do not use interrupts to

influence the behavior of the TS. They do not influence the

scheduling mechanism, they do not cause the preemption

of the current running thread. Their effect is just to keep a

timestamp of the time when the associated operation was

performed. In the case of the receive operation, the

timestamp is taken directly from the value saved by the

interrupt handler associated with the incoming event.

In the case of send operation, there are two possibilities.

Send with temporal predicates are implemented using inter-

rupt handlers(see Figure 4). Send without temporal predicate

executes just a normal send operation in the context of the

thread that calls it. For saving the time at which the message

is send, a time primitive reads the time immediately after.

The thread must not be preempted between those operations.

therefore, the interrupts have to be disabled, and maximum
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priority level for the task should be assured during this

region.

D. Component Task with Timed Send

We regard test components from TTCN-3 specification as

tasks at the RTOS level. It is interesting to analyze how

a test component task is influenced by certain operations

contained within the component, and which represents the

component’s behavior. The description of the component’s

behavior in TTCN-3 is described in Listing 1.

1t e s t c a s e SendAtTime ( ) runs
2on SenderComponent
3{
4date t ime t x ;
5

6/ / o t h e r c o m p u t a t i o n s
7s e n d e r P o r t . send ( msg ) at t x ; ;
8/ / o t h e r c o m p u t a t i o n s
9

10}

Listing 1. Component task with timed send. TTCN-3 code.

In Figure 4 presents one possible execution flow, if the

”send task” is the main prioritized task running in the system

at that time. The send instruction is a control instruction

and therefore, it has impact on the state of the ”send task”

that is running in the system at the moment at which the

send operation should be executed. When the time interrupt

is generated, it triggers the handling routine, which preempts

the ”send task” and puts it in the ready queue. Ready queue

is a queue maintained by the system, and which contains

the tasks that are ready for being scheduled next. After the

routine finish the sending operation, the scheduler gets the

first available task from the ready queue and dispatches it.

Usually, the ready queue is an ordered queue, sorted on

different criteria as task priority or task deadline.

Figure 4. Execution time line for executing a ”send” at a given time

E. Component Task with Send and Timestamp

In the execution time line presented in Figure 5 it can

be observed that the send with timestamp operation

does not preempt the execution of the component itself.

Nevertheless, after sending, the task should not be preempted

by another task before keeping the timestamp. Basically, it

locks the processor for a short period.

TTCN-3 code associated with this behavior is in Listing 2.

1t e s t c a s e SendTimestamp ( ) runs on SenderComponent
2{
3date t ime t x ;
4

5/ / o t h e r c o m p u t a t i o n s
6s e n d e r P o r t . send ( msg ) −>
7timestamp t x ;
8/ / o t h e r c o m p u t a t i o n s
9

10}

Listing 2. Component task with send and timestamp. TTCN-3 code.

Figure 5. Execution time line for a ”send” with recording the timestamp

F. Alt Operation with Receive Branches and Break Condi-
tion

A more complex interaction is encapsulated into the alt
statement. One example of one alt waiting on two ports is

described in Listing 3. All the elements described before are

used in this scenario. The proposed solution, with interrupts

for events, with handlers, and tasks represents a real-time

alternative to the snapshot semantic proposed in the TTCN-3

standard. Our intention is to split the block of the snapshot

into real-time tasks that can be efficiently scheduled at the

level of the RTOS.

In our approach, the alt is associated with a task that

manages two queues. The queues are created also by the

parent component, altogether with the creation of the ”alt

handler”. When a message is received on one of the ports,

an interrupt is generated and a handler is called. The handler

takes the timestamp and save it together with the message

in one of the abstract queues. There is a convention by

which each queue port has also an abstract queue associated

with it. The handler of the queue is awaken and starts

processing. As a manager of the queues, the ”alt task” takes

the last coming message and compares it against time and

structural patterns. Function Filter presented in Figure 8

encapsulates the generic algorithm performed for matching.

If the message matches, then the behavior associated with

that branch is executed next in the context of the current

task. If it doesn’t match, then the ”alt task” blocks waiting

for the arrival of another message. The ”alt task” can be

interrupted while executing by a timer handler or by an I/O

interrupt handler, preempted and moved to ready queue. It

can be preempted also by tasks with a higher priority. When
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the processor becomes available and there is no other task

with a higher priority running in the system, then it gets the

processor and continue its computation (see Figure 7). State

transitions for the ”alt task” are presented in Figure 6.

1t e s t c a s e InTimeRece ive ( ) runs on ReceiverComponent
2{
3date t ime t x ;
4date t ime t y ;
5date t ime t z ; date t ime t t ;
6

7a l t {
8[ ] pa . r e c e i v e ( tmpla1 ) w i t h i n ( tx , t y ) {
9s e t v e r d i c t ( pass ) ;
10}
11[ ] pb . r e c e i v e ( tmplb1 ) b e f o r e t z {
12s e t v e r d i c t ( pass ) ;
13}
14[ ] pa . r e c e i v e {
15/ / any o t h e r message ,
16/ / any o t h e r t i m e
17s e t v e r d i c t ( f a i l ) ;
18}
19[ ] pb . r e c e i v e {
20/ / any o t h e r message ,
21/ / any o t h e r t i m e
22s e t v e r d i c t ( f a i l ) ;
23}
24} break at ( t z + 10∗m i l l i s e c ){
25s e t v e r d i c t ( error ) ;
26l o g ( ) ;
27

28}
29

30}

Listing 3. TTCN-3 code sample for an alt with two ports.

Figure 6. Alt task transition states

In Figures 9 and 10, two possible execution flows are

presented. In the first one, two messages arrive, generating

interrupts. The ”alt” tasks preempted twice, one of the

message correspond with one pattern and is received in time,

therefore the execution is continued with the behavior of the

associated branch. In the second case no message is received

in time, a timer interrupt is generated and the ”alt task” is

Figure 7. Behavior of ”alt” task at runtime

Figure 8. Filter function after receiving the event

killed. An error behavior is executed in this case.

Figure 9. Possible flow of events

It is interesting to imagine how the system would look

like if we have more than one component. An algorithm

for assigning priorities to different tasks associated with

different components will be a good choice. There are also

situations depending on the misbehavior of the SUT that

can induce a malfunctioning of the test system itself. Such a

situation is a flooding of the TS with input events. Handling

endless coming events at the highest priority, may lead to

deadline overrun on the test system side. Those situations

should be envisioned and taken into consideration at the

design phase.
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Figure 10. Possible flow of events

IV. RESULTS

.

Figure 11. Latency Margins for the ”send” operation with strict timing

For the actual implementation of the proposed model

we chose a Linux platform (Ubuntu 8.10) on which we

recompiled the vanilla kernel 2.6.24, which was previously

patched with RTAI [19] version 3.6. The systems are

installed on a machine with a GenuineIntel(R) Duo Core

CPU T2500 @ 2.00 GHz. The maximum latency values,

when the system is loaded, are under 20 microseconds; those

values are obtained by running the calibration tests that come

together with the patch for RTAI. Using the RTAI we are

going to implement the concepts presented above and study

the latencies for sending operations at certain time points.

The RTAI use as a hard real-time timer, a timer of type APIC

which has a frequency of 10361250(Hz). We implemented

the send operation with timing constraints, as it is described

in the previous section. We performed several sending of

messages with different frequencies, at established timed

points. We evaluated the skew time between the imposed

time for sending and the actual time when the operation

was actually performed. The skew might be positive or

negative. It represent the latency of the system, caused by

scheduling and context shifting of tasks. The results we

obtained indicate that de latency is limited within certain

bounds. The bounds are also small, so the performance of

the system is quite good. Figure 11 presents the results for

the tests. Streams of messages where sent periodically, with

variation of periods rank of 0.01 ms, 1 ms, and some values

in between. The maximum latency for the stream with the

period of 0.01 ms is of 638 ns and the maximum latency

for the stream with the period of 1 ms is of 365 ns. As

it can be observed from the graphic, the latency decreases

as the period grows. When the period is very small, it

becomes comparable with the time required for context

switching. The latencies cumulates and might overlap the

period, increasing that way, the latencies for the next sending

operations. Therefore, for achieving a real-time behavior, it

is important to establish first, the parameters within which it

can be obtained. One such parameter is the time granularity

in which the systems has the required responsiveness. We

variate the period of sending the messages to see how system

behaves for each stream. Each stream is characterized by a

certain period inter messages. We decrease the period, from

1 ms to 0.01 ms, to consequently increase the stress on

the system. We chose this range of values for the periods,

because most of the intensive real-time applications have

timing constraints within this time range. We are also limited

by the frequency of our system’s clock, and therefore, the

frequency of the operations we programm, should be set

according to it.

In our approach, we considered that each test component

has access to the clock of the CPU on which it runs, and it

relates its timing behavior to it.

V. CONCLUSION

In this paper we envisioned a test framework based on the

extended version of TTCN-3. First, the extensions added to

the language are summarized. Then, the relation between

those concepts and existing TTCN-3 statements is studied,

an implementation is proposed, and an interaction at runtime

between those elements is envisioned. The framework is

seen as a whole, from the conceptual level to the implemen-

tation paradigm and is intended to become a standardized

platform for testing real-time applications.

Further work should address a distributed testing platform,

where different components can be assessed to different

CPUs. Different timing properties of the component (e.g.

starting time, ending time, deadline) should be studied and

developed. Also, a schema based on component’s property,

and a scheduling mechanism based on the prioritization

scheme can be conceived.
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